
C3:	Using	Observables	 1	

COM644 Full-Stack Web and App Development

Practical C3: Using Observables

Aims	
• To	introduce	Observables	as	a	tool	for	asynchronous	development	
• To	convert	a	component	from	using	Promises	to	Observables	
• To	appreciate	potential	security	issues	with	public	variables	
• To	introduce	RxJs	Subjects	for	transmission	of	information	between	

components	
• To	use	the	async	pipe	to	subscribe	directly	to	an	asynchronous	data	

source	
• To	build	a	basic	pagination	interface	
• To	implement	browser	storage	using	the	localStorage	and	

sessionStorage	objects	

Contents	
C3.1	OBSERVABLES	...	2	

C3.1.1	PREPARATION	...	2	
C3.1.2	FROM	PROMISES	TO	OBSERVABLES	...	3	

C3.2	BROADCAST	WITH	SUBJECT	..	6	
C3.2.1	OBSERVABLES	AND	SUBJECTS	...	6	
C3.2.2	ADDRESSING	THE	SUBJECT	...	7	

C3.3	USING	THE	ASYNC	PIPE	...	8	

C3.4	BASIC	PAGINATION	...	10	
C3.4.1	SPECIFYING	THE	SLICE	TO	BE	TAKEN	...	10	
C3.4.2	MODIFY	THE	FRONT	END	...	12	
C3.4.3	ADDING	COMPONENT	FUNCTIONALITY	..	13	

C3:	Using	Observables	 2	

C3.1	Observables	
	
In	the	previous	practical,	we	saw	how	the	call	to	the	back-end	API	operates	in	a	non-
blocking	manner,	with	programme	code	continuing	to	execute	after	the	call	is	made.		In	
order	to	assign	the	data	returned	from	the	API	to	a	variable,	we	had	to	append	the	
toPromise()	method	to	the	call,	which	in	turn	required	us	to	use	the	JavaScript	await	
and	async	keywords	to	identify	the	function	and	call	as	being	asynchronous.	
	
In	this	practical	we	will	examine	a	better	technique	for	handling	non-blocking	activity	that	
allows	is	to	subscribe	to	asynchronous	events	and	automatically	react	to	them	each	time	
they	occur.	
	
C3.1.1	Preparation	
	
The	current	version	of	our	Web	Service	contains	a	pair	of	functions	to	retrieve	information	
on	a	collection	of	businesses	and	to	retrieve	information	on	a	single	business.		We	will	
eventually	convert	both	of	these	to	use	Observables	rather	than	Promises,	but	initially	we	
will	deal	only	with	the	retrieval	of	a	collection	of	businesses.	

As	a	first	step,	then,	we	will	comment	out	the	definition	of	the	getBusiness()	function	in	
the	WebService	as	well	as	the	code	in	the	BusinessComponent	that	calls	the	function.		
This	will	enable	us	to	work	on	the	getBusinesses()	operation	in	isolation.	
	
	

	
File:	C3/src/app/web.service.ts	
	
...

/*
 getBusiness(id) {
 return this.http.get(
 'http://localhost:3000/api/businesses/'+id)
 .toPromise();
 }
*/

...

	
	
	
	
	
	
	
	
	

C3:	Using	Observables	 3	

	
File:	C3/src/app/business.component.ts	
	
...

/*
 async ngOnInit() {
 var response = await this.webService.getBusiness(id);
 this.business = response.json();
 }
*/

...

	
	
	
C3.1.2	From	Promises	to	Observables	
	
Now	that	only	a	single	WebService	function	remains,	we	will	convert	it	to	use	an	
Observable	rather	than	a	Promise.	
	
Actually,	the	http.get()	method	returns	an	Observable	by	default,	so	all	we	need	to	do	is	
remove	the	toPromise()	call	that	was	appended	to	it.	
	
	

	
File:	C3/src/app/web.service.ts	
	
...

 getBusinesses() {
 return this.http.get(
 'http://localhost:3000/api/businesses');
 }

...

	
	
Now,	in	the	BusinessesComponent	Typescript	file,	we	remove	the	await	and	async	
keywords	that	were	required	to	use	the	previous	Promise.		
	
Now,	since	we	are	no	longer	waiting	from	the	result	of	a	promise,	we	no	longer	assign	the	
result	to	a	response	variable	–	so	we	remove	that	code	as	well	to	leave	the	ngOnInit()	
function	as	shown	in	the	code	box	below.	
	
	
	

C3:	Using	Observables	 4	

	
File:	C3/src/app/businesses.component.ts	
	
...

 ngOnInit() {
 this.webService.getBusinesses();
 }
...

	
	
One	of	the	features	of	this	development	stage	is	to	simplify	the	Component	and	move	the	
complexity	into	the	WebService	(as	potentially	many	Components	can	make	use	of	the	
same	Service),	so	we	modify	the	http.get()	call	in	the	WebService	to	subscribe	to	the	
Observable.	
	
The	function	provided	as	the	parameter	to	the	subscribe()	method	will	be	automatically	
called	each	time	the	Observable	is	activated	(i.e.	each	time	the	http.get() method	
returns	from	the	back-end	with	data).		When	the	function	is	invoked,	it	accepts	the	JSON	
data	returned	from	the	API	and	copies	it	to	the	new	local	variable	business_list.		
	
	

	
File:	C3/src/app/web.service.ts	
	
...

 business_list = [];

 constructor(private http: Http) {}

 getBusinesses() {
 return this.http.get(
 'http://localhost:3000/api/businesses')
 .subscribe(response => {
 this.business_list = response.json();
 })
 }

...

	
	
Note	how	the	function	provided	as	a	parameter	to	subscribe()	is	written	in	the	“fat	
arrow”	style.		Fat	arrow	functions	(sometimes	just	called	“arrow	functions”)	are	a	concise	
notation	for	short	(often	single	line)	functions	that	avoid	use	of	the	function	and	return	
keywords.	The	parameter	to	the	function	is	on	the	left	hand	side	of	the	=>	symbol,	while	the	
code	to	be	executed	is	on	the	right	hand	side.	
	

C3:	Using	Observables	 5	

Fat	arrow	functions	also	have	one	important	property	that	makes	them	particularly	useful	in	
this	case	–	unlike	“normal”	functions,	they	do	not	create	a	new	scope	layer	–	i.e.	the	value	
of	the	keyword	this	is	the	same	inside	the	function	as	outside.		If	the	subscribe	parameter	
function	were	written	in	the	normal	style,	we	would	either	need	to	bind	the	value	of	this	
to	the	calling	function	or	pass	a	reference	to	the	function	as	an	additional	parameter.			
	
Now	that	the	WebService	is	modified,	we	need	to	make	a	change	to	the	
BusinessesComponent	HTML	template	to	read	the	data	from	the	new	business_list	
variable	created	in	the	Service.	
	
	

	
File:	C3/src/app/businesses.component.html	
	
...

<div *ngFor = "let business of webService.business_list">

...

	
	
Running	the	front-end	application	and	visiting	http://localhost:4200/businesses	in	the	web	
browser	(don’t	forget	to	run	the	mongod	database	server	and	the	B6	back-end	application)	
should	confirm	that	the	conversion	from	Promise	to	Observable	is	complete	and	the	
application	works	as	before.	
	
	

	
	

Figure	C3.1	Subscribed	to	the	Observable	

C3:	Using	Observables	 6	

C3.2	Broadcast	with	Subject	
	
Although	we	have	successfully	converted	the	WebService	to	use	an	Observable,	we	have	
introduced	a	potential	security	flaw	in	that	the	business_list	element	in	the	
WebService	is	publically	available	–	so	any	other	module	could	potentially	access	it	–	and	
modify	its	components	
	
C3.2.1	Observables	and	Subjects	
	
We	can	remedy	this	by	introducing	an	RxJx Subject.		This	is	a	special	type	of	Observable	
that	allows	values	to	be	multicast	to	many	receivers.	While	plain	Observables	are	unicast	
(each	subscriber	owns	an	independent	execution	of	the	Observable),	Subjects	can	be	
subscribed	to	by	as	many	observers	as	are	required.	
	
First,	we	import	the	Subject	class	from	rxjx/Rx	and	create	a	new	Subject	in	the	
WebService	class.		Next,	we	add	a	line	of	code	to	the	subscribe()	function	that	calls	the	
next()	method	on	the	Subject	to	alert	any	module	that	is	listening	to	the	Subject	that	new	
data	is	available.		Finally,	we	can	make	the	business_list	variable	private	to	this	class	to	
prevent	outside	interference.	
	
	

	
File:	C3/src/app/web.service.ts	
	
...

import { Subject } from 'rxjs/Rx';

@Injectable()
export class WebService {

 private business_list = [];
 businessesSubject = new Subject();

 constructor(private http: Http) {}

 getBusinesses() {
 return this.http.get(
 'http://localhost:3000/api/businesses')
 .subscribe(response => {
 this.business_list = response.json();
 this.businessesSubject.next(this.business_list);
 })
 }

...

	
	

C3:	Using	Observables	 7	

Next,	we	update	the	BusinessesComponent	to	subscribe	to	the	new	Subject	and	provide	
a	fat	arrow	function	that	updates	the	local	business_list	variable	with	a	copy	of	the	
data	retrieved	from	the	API.	
	
	

	
File:	C3/src/app/businesses.component.ts	
	
...

export class BusinessesComponent {

 constructor(private webService: WebService) {}

 ngOnInit() {
 this.webService.getBusinesses();
 this.webService.businessesSubject
 .subscribe(businesses => {
 this.business_list = businesses
 })
 }

 business_list;
}

	
	
C3.2.2	Addressing	the	Subject	
	
Finally,	we	can	update	the	template	so	that	the	data	is	retrieved	once	more	from	the	local	
variable	rather	than	from	the	WebService.	
	
	

	
File:	C3/src/app/businesses.component.html	
	
...

<div *ngFor = "let business of business_list">

...

	
	
	
	
	
 	

C3:	Using	Observables	 8	

C3.3	Using	the	async	Pipe	
	
Although	we	have	fixed	the	security	flaw	that	made	the	business_list	variable	publically	
available,	we	now	have	a	situation	where	any	module	could	potentially	invoke	the	next()	
method	on	the	Subject.	
	
The	solution	is	to	make	the	Subject	private	to	the	WebService	class	but	to	create	an	
Observable	on	the	subject	that	the	modules	that	consume	the	data	can	subscribe	to.	
	
First,	we	make	businessesSubject	a	private	variable	and	create	a	public	
business_list	variable	to	hold	the	data.		At	this	point,	it	is	easier	to	change	the	name	of	
our	private	business_list	variable	–	so	we	rename	it	to	business_private_list	
	
Now	we	can	create	a	new	public	business_list	object	as	an	Observable	on	the	
businessesSubject.	
	
	

	
File:	C3/src/app/web.service.ts	
	
...

export class WebService {

 private business_private_list = [];
 private businessesSubject = new Subject();
 business_list = this.businessesSubject.asObservable();

 constructor(private http: Http) {}

 getBusinesses() {
 return this.http.get('
 http://localhost:3000/api/businesses')
 .subscribe(response => {
 this.business_private_list = response.json();
 this.businessesSubject.next(
 this.business_private_list);
 })
 }

...

	
	
	
Now	we	return	to	the	BusinessesComponent	and	instead	of	subscribing	to	the	
businessesSubject	(which	is	no	longer	publically	available),	we	subscribe	instead	to	the	
new	business_list	Observable.	
	
	

C3:	Using	Observables	 9	

	
File:	C3/src/app/businesses.component.ts	
	
...

 ngOnInit() {
 this.webService.getBusinesses();
 this.webService.business_list
 .subscribe(businesses => {
 this.business_list = businesses
 })
 }

...

	
	
	
Running	the	application	and	checking	in	the	browser	should	confirm	that	everything	still	
works	as	expected.	
	
The	final	optimization	is	to	access	the	data	directly	in	the	template	without	having	to	
subscribe.	First,	remove	the	subscribe()	operation	from	the	BusinessComponent	
TypeScript	file	
	
	

	
File:	C3/src/app/businesses.component.ts	
	
...

 ngOnInit() {
 this.webService.getBusinesses();
 }

...

	
	
Then,	in	the	HTML	template,	we	access	the	WebService	business_list	object	directly	
and	use	the	async	pipe	to	indicate	that	the	data	source	will	change	asynchronously	and	
that	the	view	should	update	automatically	when	a	change	is	detected.	
	
	
	
	
	
	
	
	

C3:	Using	Observables	 10	

	
	
File:	C3/src/app/businesses.component.html	
	
...

<div *ngFor =
 "let business of webService.business_list | async">

...

	
	
This	is	a	very	efficient	solution	with	minimal	code	in	the	Component	function	and	secure,	
moderated	access	to	the	data	provided	by	the	WebService.		You	should	be	able	to	confirm	
its	operation	by	checking	in	the	browser	that	the	details	of	the	businesses	still	load	as	
expected.	
	
	
Try	it	now!	
	
Make	the	same	changes	to	the	component	that	displays	details	of	a	single	business.		You	
may	find	it	easier	to	modify	the	getBusiness()	WebService	function	so	that	it	returns	
an	array	containing	a	single	business.		This	will	allow	you	to	use	the	same	HTML	template	
structure	as	for	a	collection	of	businesses.		
	
	
	

C3.4	Basic	Pagination	
	
Pagination	is	a	common	requirement	of	catalogue-type	applications	where	the	collection	of	
data	is	too	large	to	be	displayed	in	a	single	view.		There	are	many	Angular	pagination	
components	that	you	can	download	and	use	(this	is	left	for	you	as	an	exercise),	but	it	is	
useful	to	work	through	the	development	of	simple	“Next”	and	“Previous”	buttons	as	a	
number	of	important	Angular	concepts	are	raised.	
	
C3.4.1	Specifying	the	slice	to	be	taken	
	
Our	back-end	application	returns	details	on	the	first	5	businesses	in	the	collection	by	
default.		We	also	provided	optional	querystring	parameters	number	and	start	that	allow	
us	to	change	the	number	of	businesses	returned	and	the	position	from	which	we	begin	to	
read	data.		For	example,	a	call	to	http://localhost:3000/api/businesses?count=10	would	
return	the	first	10	businesses,	while	
http://localhost:3000/api/businesses?count=10&start=20	would	return	10	businesses	after	
skipping	the	first	20.	
	

C3:	Using	Observables	 11	

In	this	example,	we	will	keep	the	default	of	5	businesses	per	page,	but	provide	“Next”	and	
“Previous”	buttons	to	add	or	subtract	5	from	the	value	of	start	each	time.	
	
First,	we	introduce	a	local	variable	start	to	the	BusinessesComponent	class	and	add	it	
as	a	parameter	to	the	call	to	the	WebService	function	getBusinesses().	
	
	

	
File:	C3/src/app/businesses.component.ts	
	
...

export class BusinessesComponent {

 constructor(private webService: WebService) {}

 ngOnInit() {
 this.webService.getBusinesses(this.start);
 }

 start = 5;
}

	
	
Next,	we	modify	the	WebService	function	to	accept	the	start	parameter	and	append	it	
to	the	URL	in	the	call	to	the	API.	
	
	

	
File:	C3/src/app/web.service.ts	
	
...

 getBusinesses(start) {
 return this.http.get('
 http://localhost:3000/api/businesses?start=' + start)

...

	
	
Running	the	application	and	checking	the	web	browser	should	confirm	that	the	parameter	is	
accepted	and	that	the	2nd	set	of	5	businesses	is	returned	and	displayed.	
	
	
	
	
	

C3:	Using	Observables	 12	

	
	

Figure	C3.2	The	second	set	of	businesses	
	

	
C3.4.2	Modify	the	front	end	
	
The	next	step	is	to	add	a	pair	of	buttons	to	the	BusinessesComponent	HTML	template	to	
trigger	the	previous	and	next	pages	of	data	to	be	displayed.		Note	the	(click)	notation	
that	assigns	the	event	handler	to	the	button.		This	is	the	Angular	equivalent	to	the	familiar	
JavaScript	onClick	keywork.		
	
	

	
File:	C3/src/app/businesses.component.html	
	
...

 <div class="row">
 <div class="col-sm-6">
 <button (click)="previousPage()">Previous</button>
 </div>
 <div class="col-sm-6 text-right">
 <button (click)="nextPage()">Next</button>
 </div>
 </div>

</div> <!-- container -->

	
	

C3:	Using	Observables	 13	

The	buttons	should	be	aligned	to	the	left	and	right	hand	sides	of	the	display	as	shown	in	
Figure	C3.3	below.	
	
	

	
	

Figure	C3.3	Adding	Pagination	Buttons	
	
	
C3.4.3	Adding	Component	Functionality	
	
Now,	we	add	the	nextPage()	and	previousPage()	functions	to	move	forward	or	
backward	through	the	collection	of	business	data.	
	
In	each	case,	all	that	is	required	is	to	change	the	value	of	start	accordingly	and	then	to	call	
the	WebService	function	that	retrieves	the	data.		As	the	HTML	template	subscribes	to	an	
Observable	that	will	update	each	time	the	API	returns	new	data,	the	display	will	
automatically	change	each	time	a	new	page	of	data	is	fetched.	
	
	
	
Note:		We	are	able	to	prevent	the	user	from	scrolling	back	beyond	the	first	page	by	checking	
that	the	value	of	start	is	never	allowed	to	be	less	than	zero.		However,	we	do	not	have	a	
similar	check	for	the	last	page.		If	our	API	had	provided	an	endpoint	that	returned	the	
number	of	businesses	in	the	collection,	we	could	use	this	value	in	the	test	–	but	this	is	left	
for	you	as	an	exercise.	
	
	
	
	

C3:	Using	Observables	 14	

	
File:	C3/src/app/businesses.component.ts	
	
...

ngOnInit() {
 this.webService.getBusinesses(this.start);
}

nextPage() {
 this.start = Number(this.start) + 5;
 this.webService.getBusinesses(this.start);
}

previousPage() {
 if (this.start > 0) {
 this.start = Number(this.start) - 5;
 this.webService.getBusinesses(this.start);
 }
}

start = 0;

...

	
	
When	we	try	the	pagination	in	the	browser	it	appears	to	work	as	expected.		We	are	able	to	
move	forward	and	backward	through	the	data	one	page	at	a	time.	
	
However,	if	we	click	on	an	entry	and	load	the	page	displaying	details	of	that	business,	we	
find	that	the	browser	‘Back’	button	returns	us	to	the	first	page	of	information	–	not	the	page	
that	we	most	recently	visited.		This	is	because	the	BusinessesComponent	is	re-initialised	
when	the	page	is	loaded,	resetting	the	value	of	start	to	zero.	
	
The	solution	to	this	is	to	store	the	value	of	start	in	the	browser’s	sessionStorage	object	
each	time	it	is	updated	and	to	retrieve	the	most	recent	value	when	the	Component	is	
initialized.	
	
HTML5	provides	localStorage	and	sessionStorage	as	repositories	for	data	on	the	
client.		The	information	is	never	passed	to	the	server	and	can	be	used	when	we	want	to	
programmatically	maintain	the	state	of	an	application.		Data	stored	in	localStorage	has	
no	expiry	date	–	it	is	not	deleted	when	the	browser	is	closed	and	will	be	available	at	any	
point	in	the	future,	while	data	in	sessionStorage	is	removed	when	the	browser	tab	is	
closed.	
	
	
	
	
	
	

C3:	Using	Observables	 15	

	
	
File:	C3/src/app/businesses.component.ts	
	
...

 ngOnInit() {
 if (sessionStorage.start) {
 this.start = sessionStorage.start;
 }
 this.webService.getBusinesses(this.start);
 }

 nextPage() {
 this.start = Number(this.start) + 5;
 sessionStorage.start = Number(this.start);
 this.webService.getBusinesses(this.start);
 }

 previousPage() {
 if (this.start > 0) {
 this.start = Number(this.start) - 5;
 sessionStorage.start = Number(this.start);
 this.webService.getBusinesses(this.start);
 }
 }

...

	
	
	
	
Note:		There	are	many	Angular	Components	available	online	that	implement	full	pagination.		
It	is	left	as	an	exercise	for	you	to	research	these	with	a	view	to	including	more	extensive	
navigation	in	your	own	submissions.	
	
	
	

